An Advanced Test Solution for Relay Stick, Miss and Functional Testing

S.J.Hobday MEng (MEC) MIET Senior Design Engineer Applied Relay Testing Ltd, England

Presentation outline.

- To show how Applied Relay Testing Ltd has given Stick, Miss and Functional testing a complete 'makeover', resulting in a new low cost turn-key life-test system that provides:
 - Provides 'stick' measurements in addition to 'miss'.
 - Pull-in/drop-out voltage testing.
 - Full data-logging.
 - Automated report generation.
 - Meets MIL-spec requirements.

What is stick and miss testing?

- Associated with 'life-testing' phase of electromechanical relays.
- Allows the life expectancy of an electromechanical relay to be determined under specific coil switching and load conditions.
- Simple 'Go/No-Go' test methodology.

Typical stick and miss test environment.

 STICK - Measurement of whether a contact is still CLOSED during the period that its expected to be OPEN.

Miss detection explained.

 MISS - Measurement of whether a contact is still OPEN during the period that its expected to be CLOSED.

The traditional stick and miss detector circuit.

Figure: Simplified Stick and Miss Architecture.

Traditional stick and miss detector improvements (1).

Figure: Additional amplification.

 Addition of a fixed gain (x100), low input offset instrumentation amplifier.

Traditional stick and miss detector improvements (2)

 Addition of Digital to Analogue Converter (DAC) and Programmable Gain Amplifier (PGA) vastly simplifies the circuit.

Introduction of FPGA further simplifies the detector design.

Removes
external frequency
generator

Automatic data-logging

FPGA

Digital failure & elapsed cycles counters

Counter size flexibility

Coil switching requirements

- AC and DC coil switching capability.
- Relay coil switching is truly asynchronous in relation to the AC power supply.
- High speed switching so that greater device cycle rates can be obtained.
- Solid state technology to eliminate reliability issues.
- Switch element should be scaleable in relation to voltage and current requirements.

Coil switching solution

 The solution to an AC switch can be achieved by placing two DC elements back to back, as found in AC PhotoMOS relays.

Pull-in and drop-out voltage testing

Test ramps - monostable device.

Test ramps - bistable device.

Reflex 40 - The complete stick and miss test system.

PC interface card

Up to 128 stick and miss device contact channels

32 channel load card

Load power supply inputs/outputs

Coil power supply inputs/outputs

Coil switching (AC/DC switch)

Stick/Miss/Pull-in/Drop-Out mode switching

Reflex 40 software

- Home page

Test status panel

Test control panel

User configurable panel

Stick/Miss test summary tab

User configurable status panel

Reflex 40 software

- Integrated reporting.

- Device reports generated from data-logged information.
- Easily customisable to suit individual customer requirements - logos, layout etc.
- Based on standard Microsoft WordTM
- Data logged information can also be exported to Microsoft ExcelTM

To conclude.

The Reflex 40 Stick and Miss Test system has eliminated many of the design weaknesses of the standard detection circuit.

Key benefits:

- Improved threshold level accuracy.
- Integrated pull-in/drop-out voltage measurements.
- AC and DC coil capability.
- Automated data logging and test report generation.