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An introduction to the Development, Architecture and Capability of Reflex 
components. 

 
Abstract – This note introduces ‘Reflex’ - a new, flexible, 

relay test architecture which builds from simple low-cost  
relay test card modules upwards into a range of flexible 
parametric or life-test systems. The architecture is designed 
to accommodate a wide variety of end-user requirements from 
simple production test of a single parameter through to 
multi-contact life testing at very high speeds and to be 
quickly configured both at manufacture and by the end-user. 
This note describes the design evolution of the Reflex system 
and how some key engineering features bring superb timing 
accuracy and flexibility to the design. 

 

I. UNIFIED REFLEX ARCHITECTURE  

A. Introduction. 

For some years, Applied Relay Testing Ltd has made 
available a range of relay test products that offer extensive 
test capability and which are designed as integrated test 
instruments for the rigors of both production and laboratory 
use. Our original RT90 parametric test system and its 
successor the RT290 have enabled relay manufacturers and 
users to perform high quality tests at high speed coupled with 
traceability and extensive investigative capability [2]. To 
complement these dedicated test systems with their integrated 
‘high-end’ features we are now introducing a range of lower 
cost relay test systems and components that combine 
flexibility with economy. Using these modular items it is 
possible to address the more cost-sensitive applications such 
as multi-station manual production test and simple automatic 
functional testing and sorting as well as more complex and 
variegated systems such as those for life-testing. These 
“Flexible Relay” or “Reflex” components and systems  are the 
result of combining and packaging key test modules to suit 
the application as exactly as possible and to therefore obtain 
the best price to performance ratio, as well as to react to the 
expected increase in system configuration possibilities as the 
newer micro-geometry devices make multi-device, multi-
contact parts possible [3][5]. 

B. Basic architecture. 

The concept behind the Reflex architecture is to provide 
modular relay test systems that are built upwards from cost-
effective relay-specific test functions and founded on the well-
establis hed PC plug-in card platform. Due to its aged design 
the PC can seem to have limitations as a hardware platform, 
but in recent years there have been many improvements in its 
application to rugged production situations with the 
emergence of true ‘industrial’ rack mountable PC chassis 
components complete with air filtering, redundant power 

supplies, stable and proven operating systems (e.g. Windows 
NT) all at increasingly cost-effective prices. These 
components are hard to ignore if one is striving for the lowest 
cost implementation of a test system and we decided that 
instead of creating a number of customised individual relay 
test systems that would each approximate (hopefully!) to 
common end-user requirements, we would create some generic 
low-end modular components that could be configured 
quickly into complete test systems such to provide quite exact 
end-user solutions at a cost-effective price. The basic building 
blocks could therefore be simple PC plug-in cards designed in 
such a way that any electrical and mechanical limitations of 
the PC platform did not intrude on relay test performance. The 
technical challenge would be to create not only a good 
mechanical and electrical test environment, but control, test 
and reporting software that would be able to accommodate all 
possible hardware flexibility, ideally configuring itself based 
on the hardware available. Such software should hide much of 
the hardware from the end-user and present itself in a simple 
and clear manner. Figure 1, showing a production graphical 
overview screen created using the Reflex software, illustrates 
that we have achieved this goal. 

 

 
Figure 1 An example of relay batch graphics, created with the Reflex 

test software. 

 
Within this chosen PC card format, we decided to partition 

test system resources into three basic categories: 
 
• Contact resources (e.g. CR measurement, contact timing 

and loads) 
• Device resources (e.g. monostable / bistable coil drive 

and measurement) 
• System resources (e.g. test start, busy, handler control 

signal and global system synchronisation and timing). 
 

The physical representation of this layout is as shown in 
Figure 2. 
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Figure 2 - Unified REFLEX architecture 

 
Since resources for measuring the basic loaded relay contact 

and for driving the device coil are always required whether for 
production parametric tests or for contact life-testing, it turns 
out that by partitioning these functions to imitate the separate 
functionality within a relay device, systems can be built from 
Reflex cards that directly correspond to the device (or devices) 
that will be tested – almost irrespective of the actual device 
configuration. Furthermore, such systems can be configured 
into either simple parametric test systems or more complex life-
test equipment simply by the number and interconnection of 
these basic PC card resources. The challenge is to manage the 
testing across all cards in such a way that system build can be 
as flexible as possible to target this end-user requirement, a 
challenge that has been met  with novel hardware linked by 
special synchronising signals and by new more ‘intelligent’ 
software. 

C. Basic considerations regarding the PC as a 
platform. 

Before committing ourselves to the PC as a platform for this 
Reflex architecture, we gave careful consideration to the 
tradeoffs between its obvious low-cost and popularity and the 
technical limitations that may affect our use of it in a relay test 
scenario. In  an ideal world, one designs a test system starting 
with a suitable electrical back-plane that accommodates not 
only the processor signals to interface with each hardware 
module, but also any special custom test signals that are 
always required by the test system itself, and in this respect 
the PC platform appears very inflexible. In addition, we felt that 
as a general purpose platform for test equipment it was less 
than ideal unless we could come up with positive solutions to 
the following questions that we posed to ourselves: 

 
How would we built a system physically to suit harsh 
environments? 
This covers topics such as housing, cooling, ease of 

maintenance and upgrading, all of which have serious cost 
implications for commercial applications. On examination of 
the industrial implementations of the PC platform housed 
within a 19-inch racking chassis, these points are well 
thought out and are very different to the casual, almost 
disposable approach taken with the more popular desktop 
PC. As examples, some ‘off-the-peg’ industrial housings are 
shown in Figure 3. 

 
 

 

 
Figure 3 The flexibility of the industrial PC platform 

 
 
What steps would we take to facilitate the quickest build or  
upgrading of new or existing systems? 
 The Reflex architecture is based on being able to quickly 

configure a system to an end-user’s requirements by simply 
inserting resource cards into a card frame, thus it is important 
to make this procedure as simple as possible, especially if 
this same procedure is expected from the customer during an 
upgrade at some stage. Traditional tasks when installing 
cards into a system require the setting of various 
‘personality’ or address switches to inform the system of the 
card location and function and this is an area where mistakes 
are easily made and where the small switches used to 
implement these settings can themselves introduce 
unreliability over the long term. Present day  PC’s implement 
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a generic ‘plug-and-play’ definition for I/O cards that already 
alleviate these set-up problems and we decided to enhance 
this further to create our own fully-automatic installation 
procedure that provides us, and the end-user, with the 
following benefits: 

 
• Our cards have no switch settings, they are simply 

inserted into the back plane. 
• The actual card address, its exact function and 

capability are scanned by the software at start-up, 
leading to a fully dynamic and re-configurable 
system that is easy to upgrade. 

• The path to future cards with additional 
functionality is clearly paved. 

 
 

How would we construct systems that require a large 
number of cards? 
This is an important requirement for systems that will test 

multi-pole devices or for larger life-test systems. Desktop 
PC’s are very poor in this respect, offering only a few I/O 
slots as well as being very restricted and unpredictable 
mechanically. By contrast, a single industrial PC chassis 
can offer up to 20 slots in a defined and planned mechanical 
layout, quite adequate for most small or medium relay test 
systems. Smaller units are also available with reduced 
numbers of slots. For the largest systems we have extended 
this concept further with a scheme whereby we can link 
multiple industrial PC chasses into a ‘virtual’ PC containing 
many more I/O slots, for example to cover (say) a 200-
contact life-test system. This scheme has required us to 
create a means of performing the ‘invisible’ linking of the 
chasses as well as the implementation of a novel shared-
address scheme that allows us to add an almost unlimited 
number of cards to a system without having to consider 
address range issues. 
 
How would we pack our contact and device resources into 
the limited PC card PCB area? 
Due to the fact that the PC was originally designed with the 

objective of housing only simple I/O cards, the actual 
available PCB area on each card is rather limited compared 
with the higher cost alternatives such as VME or VXI. This 
space limitation poses a challenge that can only really be met 
by using surface mount components where possible and by 
using a high level of integration such as the newer >10,000 
gate in-circuit programmable FPGA devices. Programmed 
using a high-level logic language VHDL, these logic parts 
have been found ideal to host the sophisticated contact 
timing measurement and other logic required to test relay 
devices. 

 
Finally, having attended to each of these points it was clear 

that we were actually able to harness the low-cost of the PC 
platform at the expense only of implementing some inter-card 
connection scheme to route signals required by our relay test 
requirements. 

 

II. CARD RESOURCES. 

A test system constructed with Reflex cards is typically 
partitioned into three areas, each implemented by one or more 
cards: 

 
• System control (typically one card) 
• Device control (this card controls device coils, and 

there are as many cards as are required by the 
application – i.e. one card per device) 

• Contact interface (this card interfaces with device 
contacts, and again there are as many cards as are 
required by the application – one card per contact 
for example). 

 
This section will look at typical implementations of these 

card functions in more detail. 

A. System card. 

Figure 4 shows the system control card. Typically this card 
fulfils the task of interfacing the system to the controls in the 
outside world, allowing device tests to be synchronised with 
mechanical handling activity and to report the status of test 
results for sorting. 
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Handler start and binning 
control 
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Figure 4 System card 

Although such simple functions could easily be ‘lost’ within 
one of the other cards, the existence of a separate system 
control card is important to the Reflex architecture and results 
in extremely flexible systems as we shall see in later sections. 

B. Contact card. 

This section looks in more detail at the contact card and its 
resources. The block diagram of a fully populated contact card 
is shown in Figure 5.  
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Figure 5 Contact card resources - block diagram 

 
This circuitry incorporates established and proven 

technology already in use by us and with the major 
components being: 

 
1. Contact loads. On-card resistive loads of 10,60,100,300 

and 1k are provided, which together with a load voltage 
generator of +/-20mV to +/-10V, allow a wide range of low 
and medium level contact environments. The loads can be 
disabled for dry circuit switching or to use the system in 
CVD (contact voltage drop) mode, and a special option 
takes the on-card load capability further up to +28V, 
100mA.  

2. Versatile contact voltage drop measurement. DC or A/C 
voltages can be measured at the contact sense terminals 
in the presence of open-circuit load voltages up to +/-
400vpk. 

3. A flexible multiplexer. This routes the load and voltage 
measurements to the contact connections to permit 
measurement of contact resistance (CR), contact voltage 
drop (CVD) Kelvin fixture check, self-test and calibration. 

4. A contact open / closed state comparator. This  operates 
at a programmable voltage that can be a simple fixed 
value, or a percentage of the load voltage (e.g. 90%). 

5. Timing logic. This logic provides results for operate and 
release time, bounce time and number of bounces. The 
bounce criteria is also programmable to exclude events 
shorter than specific limits. 

 

Timing logic – block diagram. 
 
Figure 6 shows the block diagram of the logic used to 

monitor contact operate / release and bounce times. This logic 
is simple in concept but complex in its number of registers and 
their interconnection, prompting us to implement it within one 
of the newer >10k gate FPGA devices, allowing us to 
incorporate it together with other card logic and to obtain 
other benefits such as flash-programming and ease of 
changes.  
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Figure 6 Block diagram, timing measurement 

 
Timing measurement operates as follows. 
 

1. The system clock (10MHz) runs all the time and is divided 
by the prescaler TPR to produce the actual timing sample 
clock, for example 1us (divide by 10). 

2. The timing clock feeds the master counter TBC which 
starts counting upward from zero at T0 and counts 
upward. 

3. When the master count reaches the value in the start 
delay register TMD, contact monitoring commences and 
the registers TFE, TNE and TLE latch values for the time 
of the first edge, the number of edges and the time of the 
last edge respectively. 

4. Finally, the master count reaches the value in the timing 
duration register TDU – this defines the total time 
allocated to the timing measurement and the ‘timing done’ 
flag is asserted. 

5. Following a timing measurement, software fetches these 
register values and processes them to produce operate 
and release time, bounce times and number of bounces. 

A/D measurement logic – block diagram. 
 
Figure 7 shows how an A/D is provided ‘behind’ each 

contact. This may seem an extravagance, but the performance 
and flexibility that results is well worth the additional expense. 
In fact simply providing the A/D itself is not the real problem, 
the real challenge being to obtain a wide range of A/D 
measurement modes and qualities  depending on the system 
application. Our high-integration FPGA allows us to solve this 
problem again by providing control logic that handles the A/D 
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without any software intervention at all, permitting truly 
parallel test systems to maintain their timing independent of 
the number of contacts being measured. The logic allows us to 
make a general-purpose voltage measurement over any 
integration period, with flexible sample counts and to 
automatically perform phase-sensitive rectification on known 
AC signals whilst largely eliminating unwanted induced noise 
and AC pickup [4]. As a result, this voltage measurement is 
used for measuring contact voltage drop, contact resistance 
as well as for the Kelvin connection checks, self-test and 
calibration. 
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Figure 7 Block diagram, A/D intergation 

 
A/D integration operates as follows. 
 

1. The system clock (10MHz) runs all the time and is divided 
by the prescaler APR to produce the actual A/D sample 
timing interval, for example 30us. 

2. The sample clock feeds the sample counter ASC which 
holds the required number of samples and it also feeds 
the start delay counter AMD which delays the start of the 
AMD counter to offset the A/D measurement if required. 

3. At the start of the integration, the result accumulator 
ADR is cleared to zero. 

4. During the integration, each sample causes the A/D to be 
triggered and its result  added to the accumulator. This 
register is 32 bits, allowing for 65536 (16-bit) sample count 
with a 16-bit A/D result. Note the ‘phase’ signal which 
allows this logic to accommodate AC measurement by 
instructing the logic to either add or subtract from the 
accumulator. 

5. Finally, after the integration, the processor reads this 
value and performs the necessary sample count division 
to normalise it back to a useful value. 

 
This logic is very flexible because it can be programmed to 

cover a wide range of integration times and measurement 
qualities. This is particularly useful in a life test situation 
where short measurement times are desirable, but where some 
investigation is still needed for the end-user to establish the 
best integration time versus measurement performance trade-
off. 

C. Device card. 

This section looks in more detail at the device card and its 
resources. A typical device card is mainly responsible for 
controlling device coils with a block diagram typically as show 
in Figure 8. 
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Figure 8 - Device card resource block diagram 

 
 

Basic device card capability. 
 
The major components of the device card capability are: 
 

1. Coil power supply. This is an interface to a local power 
module that provides a programmable voltage and current 
bipolar supply. In addition to this coil supply there is 
optional active drive circuitry to accommodate transistor 
and FET-based relays where required. 

2. Control logic manages the coil on/off switching and 
response to the bus signals T0, CFLAG and generates a 
‘device done’ flag DLFAG. In addition, this logic contains 
the ability to ‘step’ a nominated D/A, auto-incrementing 
or auto-decrementing it to make processor independent 
measurements of the device operate or release 
characteristics.  

3. A fast coil switch is provided between the coil power and 
the device to enable accurate timing tests. 
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4. A coil terminal multiplexer allows various modes of coil 
power connection to the device, including fixture tests 
and combining or isolating coils for bistable testing. 

5. Coil drivers suitable for monostable or bistable single or 
dual coil drive, with or without active device drive. 

6. The PC bus interface to access various card registers and 
to configure the card prior to, and after, a hardware test 
phase. 

 

Stepping logic – block diagram. 
 
For true parallel device testing, the device card is capable of 

auto-incrementing or auto-decrementing coil or active drive 
D/A values without processor intervention – this permits 
hardware determination of operate and release voltages or 
currents. Figure 9 shows the block diagram of the logic used. 
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Figure 9 Block diagram, step logic 

 
The step logic operates as follows. 
 

1. The system clock (10MHz) runs all the time and is divided 
by the prescaler SPR to produce the step timing clock, for 
example 1us (divide by 10). 

2. The step clock feeds the step counter STC, which starts 
counting downward from an allowed step count after the 
step delay SED elapses. Step activity is completed when 
this counter reaches zero or on CFLAG, depending on the 
mode of operation. 

3. On every step, the value in the step delta register STD is 
either added or subtracted from the step accumulator 
STA. 

4. When the value in the accumulator STA changes, the 
control logic issues a load pulse to the appropriate D/A, 
transferring the STA value to it. 

5. Finally, the step activity is complete and the ‘done’ flag is 
set. The processor can read the step count to determine 
the exact point at which device activity occurred.  

 

III. CARDS BECOME SYSTEMS – THE INTER-CARD 
CONTROL SIGNALS. 

When a relay test system is configured using these Reflex 
cards, its effectiveness is due in no small part to the design of 
some key global control signals that inter-link the cards. These 
signals actually have nothing to do with the PC architecture 
and have to implemented as custom wiring, yet they enable 
the cards to co-exist and to form a true relay test system. It 
would actually be possible to implement a relay test system 
without these signals and with the card resources controlled 
totally by software alone but the measurement timing of such 
a system would be very uncontrolled and there would be a 
significant degradation of performance as the number of cards 
increased, exactly the opposite of that which we wish to 
achieve with a fast multi-contact life-test system. These inter-
card signals synchronise and flag key device activity and 
release the controlling software from having to meet 
unrealistic timing obligations. 

 
 There are three main control signals, typically bussed across 

all cards and with functions as follows. 
 

System timing (T0). 
This signal is asserted at the start of a hardware test 
(possibly to initiate a measurement of CR or timing) and its 
assertion marks the start of all synchronised activity across 
all of the required resources, for example if the test system 
is testing a 4-pole changeover device for contact 
resistance, all 4 closed contacts are measured at exactly the 
same time with no software delay or uncertainty. This 
master signal is issued by the system card and is received 
by all other cards. 
 
‘Contacts’ flag bus (CFLAG). 
This signal is asserted when all local tasks relating to 
contact resources are complete, or when a required contact 
target state is reached. This signal is issued by contact 
cards and is received by a device card. As such, events 
such as the completion of a parallel CR measurement can be 
monitored on a device basis. A feature of the exact 
electrical definition of this signal is that it can be 
programmed to indicate either a group event (the usual case 
where for example all CR measurements have finished) or 
individual contact events (for example to measure the 
operate voltage of each contact during an operate coil 
voltage ramp). More about this ‘group’ and ‘individual’ 
capability later. 
 
‘Device’ flag bus (DFLAG). 
This signal is asserted when all tasks relating to the device 
are complete. This signal is received by the system card 
and is normally an output from all device cards. As with the 
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CFLAG line, it can be programmed to be asserted on ‘all’ 
devices, or on ‘any’ device depending on the nature of the 
test. 

 

A. An example of how these key signals measure 
operate voltage. 

 
The action of these key relay test signals can be seen in the 

timing diagram of Figure 10 which shows how the system 
measures the operate voltage of a relay without software 
intervention during the applied test ramp and despite the fact 
that device contacts may be arbitrarily distributed across 
separate contact cards. Without these control signals this 
measurement would only be practical using significant 
software querying intervention and with the attendant timing 
uncertainty. 
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VStart 
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Figure 10 - Operate Voltage measurement 

 
 

The measurement is a simple 3 step process. 
 

• At ‘1’, the synchronising signal T0 is asserted to 
indicate the start of the test. This causes the device 
card coil resources to commence ramping the coil 
voltage from VSTART upwards and using the 
‘stepping’ logic discussed earlier. 

 
• At ‘2’, the device is completely operated causing the 

CFLAG line to become asserted, and causing the coil 
voltage ramp to stop at the device operate voltage. 
Note that in this mode, the CFLAG line will only 
become asserted when ALL contacts have reached 
their target state, i.e. when the device is operated. 
(As will be seen later, another mode is possible where 
CFLAG is asserted and stops the ramp on each 
contact state change, should individual contact 
operate voltages be required). 

 

• At ‘3’, the device flag line DFLAG becomes asserted 
to indicate that the device activity is finished and this 
signals the system card to note the end of the test 
and to return T0 to its inactive state. The software 
can now interrogate the device card to read the actual 
final coil voltage and to reset the various hardware 
ready for another test. 

 
 

B. Electrical wiring of the key signals solves the 
monitoring of contact events  

 
Most of the power of these timing signals is in their 

flexibility, being able to indicate single or group events (for 
example either a single contact change or a complete device 
operate condition). This is achieved by linking the actual 
signal meaning to its polarity. 
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Figure 11 Combining contact information with CFLAG 

 
Figure 11 shows the wiring of the CFLAG and DFLAG lines – 

a scheme termed a ‘wire-or’, so called because the signal 
calling in at various cards (contact #1, contact #2 etc) actually 
creates a logical OR function where the line ‘wants’ to float 
high to +5v by the action of the resistor, but can be pulled low 
by one or more contact cards simply by each one closing its 
CFLAG output ‘switch’ (shown as ‘Contact 1’, ‘Contact 2’ 
etc). Thus contact #1 OR contact #2 OR contact #n can 
control the line – a situation analogous to an emergency brake 
cord requesting a stop action. By simply defining the meaning 
attached to a contact switch closure we can use the line to 
indicate device contact activity across many contacts, and the 
table shows how the line can be used to indicate the state of a 
group of contacts, or simply that of a single contact. 
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IV. HOW THE REFLEX ARCHITECTURE BUILDS VARIOUS 
SYSTEMS. 

These control signals are actually very powerful and be used 
to link contact and device cards in either a ‘flat’ or 
‘hierarchical’ manner to construct test systems with various 
parallel test characteristics. This section looks at how to 
configure a number of different relay test systems from Reflex 
resources and depending on the end application of the 
system. 

A. A simple parametric test system. 
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Figure 12 - Signal wiring - basic system. 

 
Figure 12 shows a basic system for testing one relay device.  
A system card manages system timing and external control 
signals, while a device card controls the device coil and two 
contact cards interface with the contacts. These cards are 
linked with the T0, DFLAG and CFLAG signals as shown, 
allowing additional contact cards if required. A system 
configured in this way would be similar to the RT290 
parametric test system in its ‘single device’ functionality. 

B. Testing two devices synchronously. 

 
In many production situation more than one device is tested at 
a time, for example as part of an automatic handling system 
where the indexing time is comparable to the device test time 
and where this is then the only way to achieve increased 
throughput. The Reflex architecture has been designed to 
accommodate this by simply configuring the required cards as 
shown in Figure 13. 
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Figure 13 Signal wiring - dual system. 

 
 

This shows two devices – device #1 and device #2, each with 
their own resources much as for the simple single system in 
Figure 12 but with a common system card. The difference is 
that: 

 
• The T0 system timing line is taken to all cards so that 

all cards act simultaneously. Note that this imposes 
the restriction that the test for each device must start 
synchronously (although the two devices could be 
different and be tested to different test programs). 

 
• The DFLAG (device ready) line is joined between the 

two device cards, allowing the system card to 
respond to devices as a group, or singly depending 
on the software programming of its assertion state. 

 
Conceptually, this paralleling of devices can be extended 
indefinitely to test many devices in parallel – note though, that 
the controlling software must be able to understand the wiring 
configuration and manage the resources for configuring a test 
program and collecting result data. As we will see shortly, this 
is not too difficult given today’s processing power, object 
programming and multi-threading. 

 

C. A life test configuration. 

 
To create a life-test system, the architecture of the dual system 
can be extended to provide as many ‘coils’ and ‘contacts’ as 
required, and the T0, CFLAG and DFLAG signals connected 
as shown in Figure 14. 
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Figure 14 Life test system architecture 

 
This shows a ‘2 device’, ‘4 contact’ life test system, 
synchronously testing from the common timing signal T0 and 
with a common contact flag CFLAG and a common device flag 
DFLAG. The fact that these signals are common across all 
devices and contacts breaks the architecture somewhat but 
only restricts the system to testing all devices at the same time 
and whilst it would be possible to run different devices on this 
system, the system would cycle at the speed of the slowest 
device. (By adopting the architecture of the dual system where 
system control and CFLAG routing accurately reflected the 
device construction, it would be possible to run life tests on 
independent devices at different rates, although this would 
bring increased software reporting complexity). 
 
Clearly this represents a larger system that can be built with 
Reflex components and requires not only a larger number of 
cards, but power supplies and other ancillaries as well as the 
industrial PC rack. To illustrate this, a typical physical 
implementation of the Reflex 50 life-test system is shown in 
Figure 15. 
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Figure 15 Rack mounted items – Reflex 50 Life Test System. 

 

D. Testing two devices asynchronously. 

 
As an extension of the synchronous dual system, very 
occasionally it is required to test multiple devices but with 
each device handled completely independently, for example 
where each device might be located within a separate 
mechanical handling system and cannot be guaranteed to be 
ready for testing at exactly the same time.  

 
The Reflex architecture can handle this by simply adding more 
system cards to create multiples of a basic single system and 
as shown in Figure 16. 
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Figure 16 Multiple asynchronous system 

 
As can be seen, devices #1 and #2 know nothing about each 
other at all, and although the control is by common software 
that sets up and collects data from all cards in both systems, 
the two systems actually operate independently. Again, it is 
instructive to note that the Reflex architecture can easily 
accommodate this requirement. 

 

V. HOW THE REFLEX ARCHITECTURE GUARANTEES 
MEASUREMENT TIMING  

Although not always essential, it is desirable to make device 
measurements in a repeatable way between tests, for example a 
specified time should elapse between applying operate 
voltage to a device coil and the closed contact being 
measured for resistance. In a software-driven system this 
often results in guaranteeing that at least a minimum time will 
elapse for this – enough to ensure that the contact is indeed 
closed and has become stable – but this still causes 
uncertainty about the actual point of measurement and may 
lead to inefficiency where the testing of small, fast devices 
becomes limited by software response times such as in reed 
relay contact or micro-relay life testing. 

 
The Reflex architecture with its inter-card signals avoids this 

pitfall and results in accurate measurement timing across large 
numbers of devices, releasing the software to simply gather 
result data after a measurement has completed. In this section 
we will look at how this timing accuracy is achieved. 

 

A. Timing of events during a CR measurement. 

 
Let’s look more closely at the interaction of these CFLAG, 
DFLAG and T0 lines in a typical system, perhaps as shown in 
the simple single relay test system of Figure 12, where there is 
one device card, two contact cards and a system card. 
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Figure 17 Example system signals – CR measurement. 

 
Figure 17 shows how these signals interact to complete a 
contact resistance (CR) measurement on all contacts. An 
important point to note is that all measurement timing is 
controlled by hardware, not by the controlling PC. This is 
important for two reasons – firstly because although 
processor speed has increased dramatically over the last few 
years, so have the number of ‘background’ tasks such as 
printing, networking etc, all of which ‘steal’ time away from an 
application such as relay testing and – worse – can be very 
unpredictable. Secondly, hardware-derived timing does not 
degrade as further hardware resources are added, making it 
possible to implement potentially large life-test systems 
without significant impact on measurement time. 

 
The actions during a CR measurement are as follows. 

 
• At ‘1’, the T0 line is asserted by the system controller 

to indicate the start of a test phase (in this case a CR 
measurement on all contacts in parallel). 

• At ‘2’, the coil drive is enabled after a programmable 
delay SED. 

• At ‘3’, the contact load is enabled after a 
programmable delay LED – this delay and its relation 
with the coil delay SED allows a variety of dry and 
wet contact switching to be obtained. 

• At ‘4’ an example contact changes and starts to 
bounce until ‘5’. In this example, the load is already 
enabled so the contact switches ‘wet’. Alternatively, 
if the load were delayed until ‘6’, the contact would 
switch dry. 

• At ‘7’, the contact resistance measurement starts 
after a programmed delay TMD. 

• At ‘8’, the measurement is complete and asserts an 
internal CRDONE flag at ‘9’. 
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• The CRDONE flag for each contact releases its 
CFLAG output and may remove the load (depending 
on load mode), but CFLAG will not go high until all 
contacts have released it (at ‘10’), allowing the 
system to observe CFLAG as relating to all contacts 
completing their measurement. 

• At ‘11’, CFLAG is seen asserted by the device card, 
may clear the coil drive (at ‘13’, and depending on 
coil mode) and causing it to release its DFLAG line, 
indicating that device activity is  complete. 

• At ‘12’, the system card has observed that DFLAG is 
asserted and ends the test phase by clearing T0.  

• At ‘14’, the system responds to the end of the test 
phase by the processor interacting with the hardware 
to clear down the various hardware flags and then to 
read the CR result information from each card.  

 
For completeness, the timing of events during a timing 
measurement and during life-testing are reproduced in 
Appendix I and II respectively, and it will be seen that there is 
a great deal of similarity in these to the CR measurement just 
illustrated. 
 

VI. OTHER DEVELOPMENTS OF THIS REFLEX 
TECHNOLOGY 

We are already building on the foundation of the Reflex 
architecture with components that permit tests other than the 
traditional contact and coil measurements. For example,  we 
have now implemented the requirements of CECC and MIL-
spec [1] to create a fully digital 8-channel chatter detector card 
for device vibration monitoring, and we plan to extend the 
range further.  

APPENDIX 1 – TIMING OF EVENTS DURING A CONTACT 
TIMING MEASUREMENT. 
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Figure 18 Example timing signals - Timing 

 
The actions in Fig 18 during a timing measurement are as 
follows. These signals are identical to the contact resistance 
diagram of Figure 17 with the exception of those indicated 
below. 

 
• At ‘3’, the load is enabled before any contact activity 

is expected, since timing requires that a load be 
available to determine the contact open / closed 
status. 

• Synchronised to T0, timing counters monitor for each 
contact ‘first edge’, ‘number of bounces’ and ‘last 
edge’, with results available at ‘8’(TDONE) after the 
allowed timing duration TDU. 

 

APPENDIX II - TIMING OF EVENTS DURING LIFE-TESTING. 
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Figure 19 Life-test timing 

 
For a life-test system, the Reflex architecture shows its true 
worth. Figure 19 shows the timing signals to make CR and 
timing measurements on every contact and on every operate 
and release cycle during a life-test. This next description goes 
through the signals and how they relate to a life test.  Note 
that this only shows the ‘operate’ phase of a life-test cycle - 
operate and release phases are actually identical in hardware 
and only the software data read actions and specific contact 
activity changes. 
 

• At ‘1’, the T0 line is asserted to define the test phase 
start for the operate series of measurements. All 
hardware timers start running. 

• At ‘2’, after the programmed delay SED, the device 
coil is enabled. (In this life-test mode, software has 
configured it to remain active until the next T0 at the 
start of the release phase). 

• At ‘3’, the load is enabled ready for the contact 
switching. 

• At ‘4’, an example first contact edge is seen and its 
time is recorded in the ‘first edge timer’. This will 
produce the timing result ‘operate time’ OT. 

• Between ‘4’ and ‘5’, the contact bounces and at the 
end of this time, counters have values that will 
become ‘operate bounces’ (ONB) and ‘bounce time’ 
(OBT) taken from the time of the last edge. 

• At ‘8’ the allowed timing measurement duration ends, 
producing a ‘timing complete’ signal TDONE. 

• After the CR measure delay timer AMD expires, the 
CR measurement (or contact voltage drop) starts, 
completing its measurement at ‘10’ and setting the 
CRDONE flag. 

• At ‘13’, with timing complete (TDONE) and CR 
complete (CR DONE), the contact can assert its 
CFLAG, and the bus CFLAG line will assert when all 
contacts are complete (typically at the same time). 

• At ‘11’, the device card observes CFLAG and 
responds by setting its DFLAG output. 

• At ‘12’, the system card observes DFLAG and uses 
this to de-assert T0 at E23, signalling the end of the 
test phase and that the processor should now 
intervene to collect data and prepare the system for 
the release phase. 

• At ‘14’ there is processor activity, to collect timing 
data and to clear CFLAG, DFLAG and to configure 
the system ready for the release phase. Typically, in a 
life test situation, the load is required to remain ON if 
a contact fails – so after pass / fail classification at 
‘14’ the load can either be removed (the normal case) 
or remain on with a halted system. (Note that it is also 
possible that the same load is present and ON for the 
entire life-test cycle – load modes permit this to be 
selected in software). 

• When the processor has configured the system 
ready for the release phase, another T0 occurs and 
the cycle repeats as shown for operate. There is no 
difference between the release and operate timing, 
only that CR (or contact voltage drop) is measured 
across normally closed contacts instead of normally 
open contacts. 

 
 
 

CONCLUSION 

The ‘Reflex’ relay test components developed by Applied 
Relay Testing implement a flexible solution that permits a wide 
range of test systems from simple single-seat operator test 
stations up through automatic handler-based test  through to 
large life-test systems. The flexibility and ease of configuration 
achieved with the described technology  translates into a 
good match between the device configuration and the test 
system and achieves an excellent price-performance trade-off.  
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